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A random choice method for solving nonlinear hyperbolic systems of conservation 
laws is presented. The method is rooted in Glirnm’s constructive proof that such systems 
have solutions. The solution is advanced in time by a sequence of operations which 
includes the solution of Riemann problems and a sampling procedure. The method can 
describe a complex pattern of shock wave and slip line interactions without introducing 
numerical viscosity and without a special handling of discontinuities. Examples are 
given of applications to one- and two-dimensional gas flow problems. 

OUTLINE OF GOAL AND METHOD 

The goal of the present paper is to present a numerical method for solving non- 
linear hyperbolic systems, in particular those which arise in gas dynamics. The 
method is meant to be usable when the solution sought exhibits a complex pattern 
of shock waves and slip lines, and possibly large energy densities; it is meant to 
be useful when methods which rely on either an artificial viscosity or on a special 
treatment of discontinuitites become impractical because they are either too difficult 
to program or too expensive to run. The particular applications we have in mind 
are to combustion problems in engines, where a complex wave pattern is known 
to exist [l 11, and where the use of finite differences is undesirable because numerical 
viscosity cannot be allowed and because there arise stability problems which are 
hard to overcome [3]. 

The method of computation evolved from Glimm’s constructive existence proof 
[5], which will now be described. Consider the strictly nonlinear system of equations 

Ut = NGc 9 (1) 

where u is a solution vector and the subscripts denote differentiation. (For a 
definition of strict nonlinearity, see [8].) Let the initial data u(x, 0) be close to 
constant (the specific assumptions are spelled out in [5]). The time t is divided into 
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intervals of length k. Let h be a spatial increment. The solution is to be evaluated 
at time t = nk, n integer, at the points i/z, i = 0, f l,..., and at time (n + $) k 
at the points (i + i) h. Let utn approximate u(ih, nk), and let u;“,::i” approximate 
u((i + +) h, (n + +) k). To find u$$i2 g iven uin, @‘+l (and thus define the algorithm) 
one begins by considering an initial value problem for Eqs. (1) with the discon- 
tinuous initial data 

u(x, 0) = u:+“+l for x > 0, 

u(x, 0) = up for x < 0. 

(Such a problem is called a Riemann problem.) Let v(x, t) denote the solution of 
this Riemarm problem, and let Bi be’a value of a random variable 8 equidistributed 
in [-+, $j; let Pi be the point (B&z, k/2), and let ti = v(P,) = v(&h, k/2) be the 
value of the solution of the Riemann problem at Pi . Set 

Uifll2 * ni112 = fi 

A similar construction allows one to proceed from u$$i2 to $+I. In [5], Glimm 
showed that under certain conditions, u converges to a weak solution of (1). In 
the next four sections, it will be shown how this construction can be made into 
an efficient numerical tool. 

In the first of these sections, the algorithm is applied to the solution of the 
equations of gas dynamics in one space dimension. The treatment of boundary 
conditions, the transport of passive quantities, and, most importantly, the sampling 
procedure for 8, are described. An appropriate choice of sampling procedure is 
crucial to the success of the method. 

In the second of these sections, the method of solution of the Riemann problems 
is described, following in the main the ideas of Godunov [6]. 

In the third section, the method is generalized to multidimensional problems. 
A section is then devoted to examples, and conclusions are given at the end. 

An earlier attempt to program Glimm’s method is described in [lo]. An 
interesting discussion is given in [9]. 

IMPLEMENTATION OF GLIMM'S METHOD 

The equations of gas dynamics in one space dimension can be written in the 
(conservation) form 

pt + (P& = 0, Pa) 

wt + CPU” + do = 0, (2’4 

et + ((e + P> 4, = 09 Q4 
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where the subscripts &note differentiation, p is the density of the gas, ZJ is the 
velocity, pu is the momentum, e is the energy per unit volume, and p is the pressure. 
We have 

e = PE + $pu2, (2d) 

where E is the internal energy per unit mass; furthermore, we assume the gas is 
polytropic, and thus 

E = MY - MPlP), (W 

where y is a constant, y > 1. Equations (2) are not strictly nonlinear in the sense 
of [5, 81, and our data will not be close to constant. Thus belief in the convergence 
of the method becomes at least temporarily the result of computational experience 
rather than the consequence of a proof. 

It will be assumed in this section that a method for solving a Riemann problem 
and sampling the solution is available; i.e., it is assumed that given a right state 
& with p = pr , u = Ur , p = pr , e = er in x 2 0, and a left state Sl with p = pl , 
u = Ul , p = p1, e = ei in x < 0, the solution of Eqs. (2) can be found. This 
solution will consist of three states: ST , Si , a middle state S.+ with u = U* , 
p = p* , separated by waves which may be either shocks or rarefaction waves. 
A slip line dx/dt = U* separates the gas initially at x < 0 from the gas initially 
at x > 0. u and p are continuous across the slip line, while p in general is not 
(the discontinuity of p would be excluded in a strictly nonlinear system). The slip 
line divides S, into two parts with possibly differing values of p.+ and e, , but equal 
constant values of U* andp, (see Fig. 1). 

Given the solution of the Riemann problem evaluated at the sample point 
P = (8/z, k/2), Glimm’s construction can be carried out. The choice of 0 of course 
determines the behavior of the solution. Thus, if 8 is close to -4, the values in 
Si propagate to ((i + 4) h, (n + 4) k), while if 13 is close to 4 the values in Sr 
propagate to their left. 

SLIP LINE ~=u‘ 

\ 
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LEFT WNE 

\ 

Fzc. 1. Solution of Riemann problem. 
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If e, , t& ,..., 8, ,... are the successive values of 0 used in the calculation, it is 
important that they tend as fast as possible to approximate equipartition on 
[-$, Q]. For more precise requirements, see [5]. It is natural to think of picking a 
new value of 0 for each i and each n. The practical effect of such a choice with 
finite h is disastrous, except for data very close to a constant. In particular, with 
such a choice, there is a finite probability that a given state Swill propagate to both 
left and right and create a spurious constant state. The first improvement in the 
method is a choice of a new B only once per time level rather than once for each 
point and each time level. In Table I we give an example of the improvement in 

TABLE I 

Effect of the Sampling Procedure on the Quality of the Solutiona 

X RunA RunB 

0.40 -1.000 -1.000 
0.46 -1.000 -0.839 
0.53 -0.963 -0.668 
0.60 -0.963 -0.594 
0.66 -0.963 -0.494 
0.73 -0.963 -0.402 
0.80 0. -0.382 
0.86 0. 0. 

a Velocity field in a rarefaction wave, I = 0.40. 

the quality of the solution which results from such a choice: Consider a gas with 
p = 1, p = 1, u = 0, in 0 < x < 1. At time t = 0 the left boundary is set into 
motion with velocity V = - 1 (we shall describe below how boundary conditions 
are imposed). The two columns of numbers were obtained by processes which 
differ only in the choice of 0. In Run A a new 8 was chosen for each space interval 
and each time level, while in Run B a new 0 was chosen for each time level only. 

The variance of the solution can be further reduced by the following procedure, 
whose goal is to make the sequence of samples Bi reach approximate equidistri- 
bution over [-Q, $1 at a faster rate. Let ml , m, , ml < m2 , be two mutually prime 
(or even better, prime) integers. Consider the sequence of integers 

no given, no -c m2 , 

TZ(+~ = (ml + nJ(mod m,). 
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(This mimics on the integers a procedure by which pseudorandom numbers are 
generated on the computer.) Consider the sequence of samples d1 , Ba ,..., of 0, 
and introduce the modified sequence 

4’ = (hi + 8, + w%J - t, i = 1, 2,.... 

The Bi’ will be used instead of Bi . To see the advantages of the modified procedure, 
consider a shock moving at a constant speed U between two constant states, 
Uk < h. The position X of the shock after n half-steps is given by 

X= hf rli, 
i=l 

where the 7i are random variables, 

vi = B if hOi < Uk/2, 
= -4 if hOz > Uk/2. 

The standard deviation of X is 

hW2{(S + U(k/h))(~ - WWW2. 

The standard deviation is a measure of the statistical error. Its maximum value is 
reached when Uk = 0, when its value is h(n)lj2/2. If the &’ are used instead of the 
Bi , the maximum standard deviation in X becomes +h(n/m2)1/2; furthermore, if 
the ei are used, we have 

-nh/2 < X < nh/2; 

the extreme values fnh/2 can be reached (although with a very low probability); 
on the other hand, if the &’ are used, we have 

m31m2 d X < (ma + l)/m2 

whenever n is a multiple of m, , and where m3 is the integer part of Unkm,[2. When 
h is &rite, m2 cannot be made too large; otherwise, it introduces a systematical 
error into the calculation. We usually picked m2 = 7, m, = 3. The convergence 
when h + 0 is not affected as long as m2 remains bounded. 

Boundary conditions can be satisfied through the use of symmetry considerations. 
Consider a boundary point at x = b, with the fluid to the left. The boundary 
conditions are imposed on the grid point closest to b, say i,,h. A fake right state 
Sr at (i. + 3) h is created by setting 

Pi,+112 = PC&+/2 9 W 

%o+ll2 = -"fo-l/2 3 (3'9 

Pio+112 = Pi,42 * (39 
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One then samples that part of the resulting Riemann problem which lies to the 
left of the slip line. If the variance reduction technique described above is used, 
the 0 used at the boundary must be independent of the 0 used in the rest of the 
calculation, or else there may be a finite probability that waves reflected from the 
boundary may never actually penetrate the interior of the domain. If an additional 
point (i,, + 1) h must be added to the grid, the values of p, U, p at this point are 
set equal to the values of the solution at the Riemann problem just described, 
sampled just to the left of the slip line. 

If a passive quantity 9 is transported by the fluid. i.e., if the equation 

$4 + WL = 0 

is added to Eqs. (2), it can be readily seen that 

(4) 

#i”+::i” = &” if P = (h, k/2) is to the left of the slip line, 

= *IL if P is to the right of the slip line. 

As a result, the region in which $J # 0 remains sharply defined if it is sharply 
defined initially. Shocks are kept perfectly sharp. If I/ is a step function at t = 0, 
it remains a step function for all t. We express this by the statement that the method 
has no numerical viscosity. 

The accuracy of the method cannot be assessed by usual means. There is no 
it > 0 such that the method provides an exact solution whenever that solution is 
a polynomial of degree n. For systems of equations with constant coefficients, 
the method yields a solution which exactly equals the correct solution except for 
a rigid translation of the coordinate system, by an amount which, with appropriate 
m2 , is O(h). The method has then first-order accuracy but infinite resolution. In 
nonlinear systems, and in the presence of boundaries, the situation is more complex, 
and will be analyzed elsewhere. 

The method is found experimentally to be unconditionally stable; in particular, 
it is stable when the Courant condition is violated. This fact is not paradoxical: 
since 6 is allowed to range only over the interval [-4, 41, all information from 
outside the domain of dependence of a point is disregarded. Thus if the Courant 
condition is violated, the problem effectively being solved is modified. 

To complete the description of the algorithm, a method for solving Riemann 
problems must be described. This is the object of the next section. 

SOLUTION OF A RIEMANN PROBLEM 

The solution of a Riemann problem, needed for the application of the method 
just described, requires a rather lengthy explanation (and a rather lengthy program), 
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but, since only one of the possible waves has to be fully computed, it is not uneco- 
nomical in terms of computer time. 

As already described, we have at t = 0 two states, a left state Si with p = pi , 
2.4 = Ul , p = p1, and a right state Sr with p = pr , u = ur , p = pr . We wish 
to find the solution p, i& p at the sample point P = (Oh, k/2), -9 < 19 < Q. The 
solution consists of S, on the right, Si on the left, and a state S* in the center. 
S, is separated from & by a right wave which is either a shock or a rarefaction, 
and from Si by a left wave which is also either a shock or a rarefaction 
(see [4, 5, 0. 

The first step is to evaluate the pressure p* and the velocity U* in S* . This is 
done by a method due in the main to Godunov ([6]; see also [12]). Define the 
quantity 

M* = ( pr - p*)/(ur - u*). (5) 

One can show that if the right wave is a shock, 

Mr = -p&r - Ur) = -p*(u* - U,), (6) 

when p* is the density in the portion of S, adjoining the right shock and Ur is the 
velocity of the right shock (see [l 11). In any case, one has 

kfr = ( Prha2 cb( P*/Pr). (7) 

where 

$(w) = (2g w + qy2 

- Y--l l-w 
2(y)‘/” 1 - w(Y-1)/2v 

for ~31, 

for w<l, 

(4(l) = (y)l12). Similarly, Ml is defined by 

Ml = (Pl - P*)l(W - u,); 

if the left wave is a shock, 

(8) 

Ml = p1(m - Vl) = p*(u* - Ul), (9) 

where p* is the density to the right of the left shock and Vi is the velocity of the 
left shock; in any case, 

Ml = (PIPlY RP*/Pl), (10) 

where 4(w) is defined as in Eqs. (7). From (5’) and (8), we have 

p* = (w - ur + PrlMr + pl/~l)/((l/m) + (l/Ml)). (11) 
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These considerations lead to the following iteration procedure. Pick a starting 
valuep,O (or values Mro, MrO), and then computepyl, MF+l, Mp+‘, q Z 0, using 

jq = (Ul - ur + Pr/Mr* + Pll~lQ)l((l/~rQ~ + (l/Ml*)), UW 

p”*” = max(E1 , j”), Wb) 

M;+’ = (PrPr)“’ ~(P~+‘*Pr)~ WC) 

Ml *+I = (plpp2 ~(pQ*+l/pI). (124 

Equation (12b) is needed because there is no guarantee that in the course of iteration 
j5 remains 20. We usually set l 1 = 10-6. The iteration is stopped when 

max(l MFfl - Mr* I, 1 Mf’+l- Ml* I) < ~2 , 

(we usually picked e2 = 10e6); one then sets Mr = M:+l, Ml = M:+‘, and 
* P* = PP+l* 

To start this procedure one needs initial values of either Mr and Ml or p* . 
The starting procedure suggested by Godunov appears to be ineffective, and better 
results were obtained by setting 

P* O = (pr + pl)/2. 

We also ensured that the iteration was carried out at least twice, to avoid spurious 
convergence when pr = pl . 

As noted by Godunov, the iteration may fail to converge in the presence of a 
strong rarefaction. This problem can be overcome by the following variant of 
Godunov’s procedure. If the iteration has not converged after L iterations (we 
usually set L = 20) Eq. (12b) is replaced by 

z-G+’ = 01 maxt~, ,9”> + (1 - 4 p**, (12b)’ 

with 01 = 01~ = 4. If a further L iteration occurs without convergence, we reset 
01~ = 42. More generally, the program was written in such a way that if the 
iteration fails to converge after IL iterations (I integer), 01 is reset to 

a = l3.c = aJ2. 

In practice, the cases 1 > 2 were never encountered. The number of iterations 
required oscillated between 2 and 10, except at a very few points. 

Once p* , Mr , Ml are known, we have 

U* = (PI - pr + Mrur + Mlul)/(Mr + Ml) 

from the definitions of Mr and Ml . 
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The fluid initially at x < 0 is separated from the fluid initially at x > 0 by a 
slip line whose inverse slope is (dx/dt) = U* . There are now four cases to be con- 
sidered: 

(A) The sample point P = (Bh, k/2) lies to the left of the slip line, i.e., 
%h > u,k/2, and the right wave is a shock, i.e., p* > pr ; 

(B) the sample point P lies to the right of the slip line and the right wave is 
a rarefaction, i.e., Oh > u,k/2 andp, < pr ; 

(C) P lies to the left of the slip line and the left wave is a shock, 
i.e., f?h < u,k/2 andp, > p1 ; and 

(D) P lies to the left of the slip line and the left wave is a rarefaction, i.e., 
8h < u,k/2 and p* < pl. 

Case A. The velocity Ur of the right shock can be found by using Eq. (6). 
If the sample point P lies to the right of the shock line dx/dt = Ur we have j = pr , 
U = ZQ, jj = pr . If P lies to the left of the shock, c = u* , p = p* ; ji = p* can 
be found from the second of Eqs. (6). 

Case B. Let c = (yp/p)li2 be the sound speed. The rarefaction is bounded on 
the right by the line dx/dt = ur + cr , cr = (ypr/pr)lf2, and on the left by 
dxldt = u* + c* , where c* = (‘ypJ~#~ can be found by using the constancy 
of the Riemann invariant: 

r, = 2c*(y - l)-’ - U* = 247 - 1)-l - Ur . 

If P lies to the right of the rarefaction, j5 = pr , ii = ur , jj = pr ; if P lies to the 
left of the rarefaction, p = p* , U = u* , p = p* . If Plies inside the rarefaction, we 
equate the slope of the characteristic dx/dt = u + c to the slope of the line through 
the origin and P, obtaining 

ii -I- 2 = 28h/k; 

the constancy of rr and the isentropic law pp-Y = constant, together with the 
definition c = (yp/p)lj2, yield p, E, and p. 

Cases C and D are mirror images of cases A and B, with Mr , I’, replaced by 
Ml and pi = 2c(7 - 1)-l + u, and will not be described in full. 

MULTIDIMENSIONAL PROBLEMS 

We now generalize our version of Glimm’s method to problems in two space 
dimensions. Problems in spaces of greater dimension can presumably be handled 
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in a similar manner. The equations to be solved can be written in the conservation 
form (see, e.g., [12]): 

Pt + (P& + (p), = 0, (134 

(f4t + CPU” + P)z: + (Pa/ = 0, WI 

(f4t + (P& + CPU” + A/ = 0, (13c) 

et + ((e + PAL + @ -k P>& = 0, (134 

where u = (u, V) is the velocity vector, x and y are the spatial coordinates, and e is 
the energy per unit volume, with 

e = p + &(u” + u2), 

where E is the internal energy per unit mass, with the relation 

We) 

E = MY - lMP/f) W) 

holding for polytropic gas. 
The basic procedure is the use of the Glimm algorithm as a building block in a 

fractional step method. At each time step four quarter steps of duration k/2 are 
performed; each quarter step is a sweep in either the x or y direction. The equations 
to be solved in the x sweeps are 

ft + (Pa! = 0, (144 

(fdt + CPU” + P)z = 0, (14’4 

(f4t + (fan)&? = 0, (14c) 

6 + Kf + 14 4, = 0. (144 

Equation (14c) can be rewritten in the (nonconservation) form 

ut + (4, = 0, (14c)’ 

from which it can be seen that in the x sweep u is transported as a passive scalar, 
Equation (14c) guarantees the conservation in the mean of v; thus Eq. (13e) can 
be replaced by 

e = PC + &u2 + constant; (1% 

the constant plays no role. Equation (13f) remains valid. Similar equations hold 
in the y sweeps. 

There is no contradiction between the use of a splitting technique and the basic 
Glimm procedure. At each partial step, the solution vector is approximated by 
a piecewise constant vector. In the x sweeps the resulting waves in the x direction 



RANDOM CHOICE SOLUTION 527 

are found, and in the y sweeps the waves in the y direction are found. The task 
at hand is to combine the fractional steps in such a way that in the mean the inter- 
action of the x waves and the y waves is properly accounted for. 

This can be readily accomplished as follows: At the beginning of the time step 
p, p, and u are known at the points (ih, j/z). After an x sweep, the solution at 
((i + +) h, jh) is found (see Fig. 2). The solution is approximated by functions 

- 
wtl)h.ih) 

FIG. 2. Grid configuration. 

constant on squares centered at these new points, and y waves are sampled, yielding 
a solution at ((i + 4) h, (j + &) h). An x sweep then leads to (ih, (j + 3) h), 
and a y sweep to (i/z, jh). In Fig. 2 the direction of computation is ABCDA. One 
pseudorandom number is used per quarter step. 

Boundary conditions present a challenge to the application of the present 
method. The basic technique used is reflection. If the boundary is parallel to the 
mesh, no problems arise; the reflection techniques of the one-dimensional algo- 
rithm can be adapted without further ado. If the boundary lies obliquely on the 
grid, some suitable interpolation procedure must be found. We now describe an 
interpolation procedure which we found useful when the angle 01 between the 
boundary and one of the coordinate axes was small (see Fig. 3). The numerical 
boundary is made up of points (ih, jh) with i, j integers. Thus, boundary conditions 
are needed only in the third and fourth quarter steps. Let the boundary be nearly 
parallel to the x axis. In the third sweep, which is in the y direction, values of u, 
p, and p are needed at points such as R, lying on a vertical line just below the 
boundary. Values at Q are available, and thus by reflection, values at Q’ can be 
obtained; Q’ is symmetrical to Q with respect to the boundary. At Q’, p and p 
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\ 

FIG. 3. Boundary conditions. 

equal p and p at Q, the component of the velocity tangential to the boundary 
is the same as at Q, and the normal component has changed its sign. Similarly, 
values of p, p, and u at S’ can be obtained by reflecting the values at S. Values at 
the point R can be obtained by interpolation; we can write approximately 

fR = (1 - tan a) pa’ + (tan a) ps’ , 

pR = (1 - tan a) pQ' + (tan a) ps’ , (15) 
U R = (1 - tan a) uQ’ + (tan a) us’ . 

In the last sweep, boundary conditions on the right are needed. The boundary 
is nearly horizontal, and thus, if (ih, j,h), ((i + 1) h, j,h) are two neighboring 
boundary points, one often has j, = j, , and thus the boundary conditions on the 
right do not have to be specified. If j, = j, + 1, then one sets p, p, u on the right 
equal to the values derived from (15), where S = (i/z, j,h), and Q = ((i + 1) h, j,), 
is =j, + 1. 

The method is now completely specified. We leave a discussion of the circum- 
stances under which it is useful to the concluding section. 

EXAMPLES 

It is easy to identify problems in which the present method provides answers 
of spectacular quality; for example, in one-dimensional flow, shocks remain 
perfectly sharp; passive quantities are transported without diffusion in any number 
of dimensions, and strong shocks present no difficulties. To give a good feeling 
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for the solutions obtained with our method, we picked a problem which is not 
tailored to the shape of our method; this problem involves weak shocks, oblique 
boundaries, discontinuities which form an angle of nearly 45, with the grid, and 
a steady state which is very sensitive to small perturbations, of just the kind the 
algorithm generates in abundance. It is hoped that the successful completion of 
the calculation will serve as a trustworthy testimonial to the power of the method. 

The problem in question involves flow in a constricted channel. It was used as 
a test problem by Bmstein [l] for two-dimensional Lax-Wendroff methods, and 
by Harten [7] for his artificial compression method, whose purpose is to sharpen 
shocks and slip lines. A supersonic flow enters a channel with a wedge angle u 
(see Figs. 4 and 5). In all our calculations, (Y = tan-i(1/5). When the Mach number 

FIG. 4. Regular reflection pattern. 

FIG. 5. Mach reflection pattern. 

M = 2 and y = 1.4, a regular reflection occurs at the lower boundary (Fig. 4). 
When M = 1.6 and y = 1.2, a Mach reflection occurs (Fig. 5). In all our cal- 
culations, the flow was started impulsively, i.e., at t = 0 the conditions everywhere 
equaled the conditions on the left. 

In Fig. 6 we present the density field evaluated at time t = 6.31, obtained with 
h = l/17, k = 0.0147, k/h = 0.25 (the Courant condition is barely satisfied), 
with 17 nodes in the x direction and 12 nodes in the y direction. The running time 
was about 12 minutes on a CDC 6400 computer. The left boundary is maintained 
at the constant state p = 1, p = 1, o = 0, u = 2(yp/p)‘/* = 2.37 (Mach number 
it4 = 2); y = 1.4. At the right, the fluid is allowed to flow out freely. A shock is 

58d7.214-9 
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/ 

L6 

FIG. 6. Density field, Mach number M = 2, y = 1.4. 

induced by the wedge, and is reflected at the lower boundary. The shock angle /? 
(Fig. 4) should be 40.8 degrees; the computed shock angle is indistinguishable 
from this value; it is of course not computed accurately on such a crude grid. 
The exact value of p in region B is p = 1.52, and in region C, p = 2.27 (see [41). 
In Table II we give the values of p along the lower boundary. The position of the 
shocks is marked by an arrow. 

In Fig. 7 we display the density field obtained with M = 1.6, y = 1.2. A Mach 
reflection occurs. In region B the exact value of p is 1.48. In region A we have of 
cause p = 1. We used h = l/14, k/h = 0.25, a grid of 17 x 12, and ran 184 
time steps. Since the upstream flow is subsonic, small perturbations affect the 
calculation and on the right the steady state has not been reached. With good 
will, the slip line can be seen. 

These results are at least equal in quality to those obtained previously, and much 
superior to those one can expect from any straightforward first-order method (see 
[6]). It can be seen that the steady state is never fully achieved. The correct shock 
transition occurs; it is built into the method, and besides, the method conserves 
energy, momentum, and mass in the mean. One feature of the results obtained is 
that they contain fluctuation of a small scale and amplitude. This can be eliminated 
through the use of a small artificial viscosity (the present method has none), 
but such a viscosity would destroy one of the most important advantages of the 
method. Besides, a quick glance at a real flow field will show that small fluctuations 
hardly detract from the physical meaning of the computed results. 
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TABLE II 

Density at Lower Wall” 

531 

t = 5.3O(n = 360) I = 6.32 (n = 430) 

1.00 
1.00 
1.00 
1.01 
1.02 
1.08 
1.26 
1.58 
2.04 
2.41 
2.22 
2.24 

1.00 \ 
1.00 
1.00 
1.00 ! exact p = 1 

1.00 \ 
1.51 ] 
1.85 exact position of 

1.92 \ c triple point 

2.38 
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4 Mach No. M = 2, y  = 1.6, regular reflection, 17 x 12 grid. 

FIG. 7. Density field, M = 1.6, y  = 1.2. 
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CONCLUSIONS 

We have developed a random choice method for solving the equation of gas 
dynamics. This method is obviously not competitive with more classical methods 
when it is applied to problems whose solutions are smooth, since in such problems 
greater accuracy can be achieved with much smaller effort. The method is destined 
for use in problems which involve complex patterns of discontinuity; in such 
problems, the greater effort required per mesh point is balanced by the economy 
in representation, which requires fewer points per problem. 

The interesting features of this explicit method are its unconditional stability, 
and its neglect of all characteristic velocities larger than h/k. Those are features 
one desires to obtain, not always successfully, in implicit methods. The situations 
in which these features are particularly desirable are those in which the equations 
have multiple significant scales in either space or time; this happens for example 
in combustion problems, in some problems involving two phase flow, and in 
problems where both boundary layers and shocks play a significant role (see, 
e.g., [31). 

It may be interesting to compare the present method with the random vortex 
method [2] where a random choice is also an essential feature. In both methods 
the random choice feature is used to control the numerical dissipation. However, 
in the random vortex method the random choice is used to represent the real 
viscosity as well as control the numerical viscosity. This fact makes it imperative 
that the random numbers picked at the various spatial locations at a fured time be 
independent. In the present method this constraint does not apply and, in fact, 
it is essential that it be flouted. 

Finally, it should be stressed that a certain randomness is a property of many 
real flows, and thus a method which exhibits randomness is not necessarily less 
desirable than a method which yields fully predictable answers. 

Note. The programs used to obtain the results above are available from the 
author. 
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